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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECENICAL MEMORANDUM NO,. 898

THE LIYIT OF STABILITY OF A CURVED PLATE STRIP
UNDER SHEAR AND AXIAL STRESSES*

By A, Kromm

For an infinitely long plate strip of constant curv-
ature there is set up the buckling condition for combined
shear and axial stresses, Assumptions are made of the
vanishing of the moments acting on the longitudinal edges
and of the vanishing of the tangential displacements u
and the transverge stresses ¢ (longitudinal stiffeners
nonresistant to bending in the circumferential‘direction)m
The buckling condition is evaluated for the case of pure
shear and an approximate formula is derived for the criti-
cal stresses for large curvatures. In connection with
the discussion of the methods and results there ig de-
fined the range of validity of the buckling condition set
UP. - ,

I, INTRODUCTION AND STATEMENT OF THE PROBLEM

The stressed skin covering of fuselages and wings
is sectioned off by longitudinal stiffeners into panels
of small curvature by these panels constituting curved
plate strips, If a membrane type stress condition is
produced in these structural parts the egquilibrium con-
figuration reaches the limit of stability at a definite
load, Since each plate strip represents only a small
portion of the stressed-skin structure the state of stress
may be agsumed as homogeneous before buckling sets in and
therc then arises the important problem of determining
the critical loading limit for shear or compressive
stress or for the two combined,

The stability problems of a curved plate strip may be

*Die Stabilitltsgrenze eines gekrtummten Plattenstreifens
bei Beanspruchung durch Schub- und Lingskrifte," Luft-
fahrtforschung, vol. 15, no. 10/11, Oct. 10, 1938, pp.
517-26.
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classified both as to the type of loading and the end

- conditions., Since the resistance to buckling of the lon-
gitudinal stiffeners is considerably higher than that of
the plate, a rigid support in the radial direction must
be assumed at the edges (with the limiting cases of sim-
ple (no moment) or clamped support). The tangential dis-
placements, on account of the large extensional stiffness
of the stiffeners as well as the radial displacements are
to be set equal to zZero at the edges., For the tangent to
the plate at right angles to the edge, the following lim-
iting conditions are possible: The vanishing of the nor-
mal displacements {(flexurally rigid edge stiffeners) or
the vanishing of the normal stresses (edge stiffeners
without flexural resistance in the plate surface).

A number of the problems here discussed have
previously been treated. The critical stress in the case
of compressive stresses has been determined by 8., Timo-
shenko (reference 1) for an infinitely long plate strip
with constant curvature under the assumption of simply
supported longitudinal edges. Leggett (reference 2) has
investigated the critical shear stress of a plate strip
of small curvature for simply supported and clamped (flex-
urally stiff) edges. His numerical evaluation of the
buckling condition set up is wvalid, however, for only
plates with very smwall curvature. In view of airplane
construction requirements, however, his computations must
be extended to larger curvatures.

In the present investigation the buckling condition
ig set up for an infinitely long plate strip of constant
curvature for the case of moment-free support at edges
for combined shear and axial lcading. The buckling con-
dition is evaluated for the case of pure shear stress and
for larger curvatures an approximate formula is derived.
The evaluation of the buckling condition for the general
case of combined shear and axial stresses will shortly be
‘published. In contrast to what was done by Leggett we
shall start with the complete fundamental equations for
the displacements, With the aid of an expression by Ritz
for the buckling functions the factors neglected by
Leggett will then be justified for a certain range of
rlate dimensions.
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I1. GENERAL PRINCIPLES -

Let there be given an infinitely long plate strip of
width b, thickness g, and constant radius of curva-
ture r (fig. 1). The x,:y, %z coordinates are taken re-
spectively in the directions of the generators, along the
circumference and along the radius, the x axis coinciding
with one of the edges of the strip., Corresponding to the
coordinates are the displacements u, v, w, of the middle
surface, which carry the plate from the initial equilibrium
condition to the neighboring condition on reaching the
limit of stability. To produce these displacements an
amount of work A; 1in deforming the plate (potential of
internal forces) and an amount of work Az against the
‘external forces is required, Denoting the negative prod-
uct of the extornal forces by the displacements of their
points of application by V = -Ag the change in the total
potential cnergy due to the virtual displacements w, v,
w, 1is equal to

8§ ITIT = A, + V : (1)

1

The linear components of the displacements wu, v, w, in

8 IT must vanish since in the initial state the plate
strip was in equilibrium. 3Below the stability limit the
square components Q of & IT are positive (minimum of
potential energy in the stable equilibrium state). At

the stability limit at least one set of u, v, w must dbe
possible for which the square components Q vanish dbut
none for which they are negative., From this minimum prop-
erty it follows that for all admissible variations it is
necessary that

§ Q=20 (2)
(See reference 3,)

To set up the expression for the deformation work it
is necessary to find the relation between the plate de-
formation and the values of the displacements. The work
done in deforming the plate is made up of the work done
by the basic stresses, uniformly distributed over the
plate thickness, in deforming the plate middle surface
and in the deformation work of the additional buckling
stresses, In the first portion the deformation magnitudes
enter linearly while in the second they enter squared,
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Since the expression for the strain energy must also con-
tain the square terms in the displacements wu, v, w, the
sqguares of the displacements must be taken into account
in the deformations of the plate middle surface.

Let t,, t,, t5 bDe the unit vectors in the direc-
tion of the generators, the circumference, and the radius,
respectively, at any point of the middle surface. of the
plate (fig. 2). The displacement v will here be assumed
along the tangent and not along the circumference., Let
the position vector of the middle surfacse of the plate
before the deformation be R = R,. The square of the
length of the line element before the deformation is then

' R R 2 o

dsoa= 9—29—6.11 +§—:—9dy> = (t;dx + tady)® = ax® + ay°®
ox oy .

After the deformation

R =Ry +ut1 + Vv ta + w ta

dR

3= Bx = (1 + ug) &, + vx ta + wy tg

3 & : w ‘ v
-a—-;=§_y—uytl+<l+vy+-r->tg+<wy“?)ts
and
ds? = dx?[1 + 2 uy + uz® + vx? + Wy ]

. ‘ a .
+ dy®1 + 2 [+ +-‘Y-)+u,2+(v + = +<W..Z>
L vy T vy 1) vy oo/

P W. v
+ 2 dx 4y [uy + vy + ux uy+vx<vy+;)+wx (wy - ;)J

For the changes in the coefficients of the square of the
linear element of the middle surface of the plate we then
have :
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7\7

It

2 2 2
11 2 uy 4+ Ux® + V& + Wy

. a'
2(v +E>+u3+(v +4'1> (w - L
22 vy ' r 4 v 'or T\"y T 7

Yia = Uy + Vg + Ug Uy + Vg (vy + %l)f+ Wy (wy

e |

(5. ,_4)
)

The geometrical significance of these deformation magni- -
tudes is obtained from their relations with the exten-

sional and angular strains of the surface. We have (ref-
erence 4) :

¥

S’

1
Hid

- ./ ~ _ 1 L1 T
€x = 1+ ’Yll - 1= uyx + -é" an + —2- Wxa
P v = A - N 1 v )2
€ =W + Y =1 =y + =+ 2 uy +2<wy_;> &(-4 N
- - 01_3
- Y Y
sin 'ny = , L. - 12 .
~ ~ 1l 3 l + ¢

In the linear portions the magnitude ¥,, is equal to
Yxys; the values ¥,,; and Y, differ from the corre-

sponding strains ¢ and ¢ by the factor 2.

X y

For the deformations at the distance 2z from the
middle surface there are obtained under the usual assump-
tions of plate bending theory the following relations

€g = Ug = 2 Wyy ‘ N\
€ + .
v Y U r 4oz r+3z 9 ‘ L (5eyy)
'Y bl Tr 4+ 2 <1 T
- Uy 4 m——— vy - 2 (1 + )
T4z Y 3 r +z/ X

A

(The detailed derivation of these and the following rela-
tions are found in reference 5.) Since these magnitudes
enter only into the strain energy of the addifional (buck-
ling) stresses only the linear portions need be taken in-
to account, By Hooke's law the additional stresses in
the plate after buckling are found to be
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E

= » v y
o= 1 - v® (ex + ey)'
£ :
C. T e ———— €. V ¢ e e e e e . 8
y = (g v ) b (6)

B Y
2(1 +v) Xy 

These equations, integrated over the plate thickness, tak-
ing account of the trapezoidal form of the plate element
in the cross section, give the following resultant forces
and moments (fig. 3) '

~
W K
Nx = D_(“x + VVy + v;)— - Wxx
- w K r w
¥y = D("" U * Vg +7 ) v T (Wyy..’*’ ¥z J.
1 -0 _ K1-V /vy
Vgy = D =3 (uy + vz) + = 2"(?."'”355’)
1= v, K1l -v/u
- Nyx =D (u +v_)+-‘—----—<-&'—w >
yx ) v X "I‘, P > .Xs‘f
o uy vy (7))
M, = K(w F VW, - E_p ¥
z . xx Y T - r
. w
My = X (U Txx t Wyy + -y >
v
Myy = K (1 - V) (w ---2‘->,,_
xy = xy T T
. v
M =K(1-v)(w + L - X
Ix , N xy 2r 2r '
. [y
where D = Ig”sva is the axial rigidity of the plate and
E g3 ’ . e oaa
X = . the flexural rigidity.
12(1 - v?)

The deformation work of the additional stresses per unit
aron of the middle surface is
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+S/a

/. (ogey + Oy€y + T VYxy) (1 + -:-;) Tdz (8)

a1=:

ol

»

-5/2

Substituting equations (6) there is obtained

+s8/2
. r 2 2 A
ay = % T:ETJT% {(€X+€y) -2(1-v) (€x€yf‘ %’ny)] <1+§-> dz (8a)
~-8/2 ‘

For the infinitely long plate strip the displacements
must be periodic along the longitudinal direction. We
shall denote the half-wave length by 1., For the sgtrain
energy of the additional stresses over the plate width b
and a complete wave length 21 there follows from (8a):

2l p 4s/2

A, = P B ) "'(ex + ey)a
21 - vp2 | \ .
4 0 T} -8/2

2
- 2(1 - V) (cxey -‘% 'ny>J (1 +§->dxd:ydz (9)

The basic (original) stresses are made up of the membrane
shear forces T8 and the longitudinal forces ¢ s, whers
positive values of ¢ denote tensile stresses. Since the
moment of the additional stresses about the normal to the
plate

vanishes identically, as can be readily seen by substitut-
ing the deformation values from equations (7), the moments
of the basic stresses at the deformed element must be also
in equilibrium, (See reference 5, p. 200.) For the shear
-forces on the deformed shell element, we must therefore
substitute ts(l + €y)dy and Ts(l + éx)dx. TFor the
longitudinal forces, the assumption may be made that they
act along the direction of the edges.,. The stirain energy

of the basic shear forces per unit area of surface (see
fig. 4) is obtained as
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as =T18(l + ‘E_X) (1 + -G_y) sin =Y'xy' (10)

With the aid of the third of equations (4) there is ob-
tained

s = TS ?12 ‘ (103)

The strain energy of the longitudinal forces per unit
area is obtained as

a; = 08 ?x , (11)
Integrating over the plate width and a wave length, there

is obtained from equations (1l0a) and (11) for the strain
energy of the basic stresses

N N ~ e /:, r w
o -+ 3 = TS j uy + Vx + uxuy + Vx - Vy + -I-:
“o “o

2l y

3

| e /
+ Wy <wy - % )de dy + os J/ _/ [ux + %(vxa+wx2) ]dx ay
0 : (o] (12)

The potential of the external forces is

V=< 78 (uy:b - uyzo)dx - Ts‘j/ (Veen1-Yx=0)4dy

—GS/ (Uge 2l - Ugeo)dy (13)

As may be easily seen from equations (12) and (13) the
linear strain terms in the sum cancel each other (condi-
tion of equilibrium). In the change in potential energy

8H=Ai+V=A1+A2+A3+V
there remain only the quadratic portions Q. 3By substi-

tuting the displacements (5) in equatlon (9), there is
obtained
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al b‘ ' “ |
Q= // {(ux+v +-) ~3(1-v)[(uxvy"uyvx)

al b

1 2 ‘w | K W
- Z(uy—vx) +uyg F]} dx dy+§ / / {(wxx—i.wyy + ';'é')
’ o o

w 2

2 a -
W w w + 3vy '
+ = (vx - uy) xy ( xy -~y :")- L = }dx dy

4 r
albp ’ .
A w v '
+ T8 // [uxVy+Vx (vy+->+wx(wy~;> dx dy
-o' . ‘ X
al b :
+ 08 %‘/ U/ (vxa + we?) dx dy {14)

For simply supported longitudinal edges w = O and
Wyy = 0O at y =0 and y = b, Furthermore, the tan-

gential displacement wuw must also vanish at these edges,
Making use of these end conditions and the periodicity
of the displacements along the longitudinal direction
and integrating in the first term of the sum partially
with respect to x and the second term partially with re-
spect to y, it is readily seen that the portioans

2 Tx Wxx
UyVy = UyVy, WxxWyy = Wyy , and vy ‘;I - vy -

do not contribute to the sﬁrain energy, From the minimum
condition 8Q = O we then have
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21l b
i 9 £ 3
1 _ 1 .V 14+ Vx
_Béqu—/j[uxx+ uyy+-—i‘2=——-vxy+v-—;
(e} (o]
-V 1 - v
+ k (I‘l'—'g-—— nyy - I Wyxx + —""5_ Uyy>

+2q1uxy:l6uclx dy = O (15.1)

o [ w
1 — 1 -V 1 4+ Vv v

N PR

2 1 : b‘
+ qgvxxJE)v dx dy - / {(vy + qlvx)év }dx = 0 (15.2)
N ko 0
21 b
L8 Q= : i—UU- -i-'<r1+-1-“7-+E r* Abw + 2 r2 w
D w JL X ¥ r r yy
Yo o ‘ :
. o - 3 3 - P
+w 4+ r3l 5 % Uxyy - rd Ugxx = T 2 > Vxxy)
+ 2 a, (vg - 1 ny) - q, T V"xx} §w =20 (15.3)
where
K 1 g\? T8 T
D 12 12 \r 1D E
and
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Since the equations (15) thus set up must vanish f or
sach variation 6u, &v, and &w, the expressions in
bracketss under the integral signs are to be set equal to
zero, This leads to three linear differential equations
for the displacements wu, v, w, which equations may also
be derived from a consideration of the stability of a
shell element, For longitudinal members that are flexur-
ally yielding in the circumferential direction &v 1is
not equal to zero at y =0 and y =1b and from the
boundary integral of equation (15,), there is then ob-
tained as the boundary condition for the displacement at
y =0 and y = b,

Vg *t 4 Vg = 0

Considering &quation {7.,),.1it may be seen that the
normal stress and the component of the shear force in the
circumferential direction at the deformed edges y = O
and y = b must be in equilibrium, . The complete boundary
conditions at y = 0 and y = b are therefore

™
w o=

0

w = 0
yy

=0 e
0

Vy * qlvx =

e

In an exact determination of the critical stresses, -
the solutions of the differential equations in (15) must
be substituted in the boundary conditions (16). There are
then obtained eight homogeneous eguations (four at each
edge) for u, v, and w. The problem is -then to find the
smallest value of g, for given qj (or conversely) for
which a nonidentically vanishing solution for  the dis-
placements is possible., The differential equations may
be solved by assuming for the displacements the expres-
sions "

u = A sin % (Ax - m y)
v = B sin % {(Aax - m y)

C cos % (Ax - m y)

4
i
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The continuation of the method leads, however, to compu~
tational difficulties which, like thoss met in the case
of a twisted unstiffened circular c¢ylindrical shell of fi-
nite length (referenge 5, p. 203), exceed reasonable
bounds, The computation will here be carried out with the
aid of a Ritz expression in the form already employed by
Leggett for the strip of small curvature and by E. Seydel
for the f£lat strip (reference 6).

II1I. SETTING UP OF THE BUCKLING CONDITION
WITH THE AID OF A RITZ SUBSTITUTION

The Ritz method consists in approximating the dis-
placements by using a combination of partial expressions
in which undetermined values enter linearly, each expres-
sion satisfying the boundary conditions. The values are
then so determined that the approximating expression, sub-
stituted in equation (14), reduces the latter to a mini-
mum. The calculus of variations problem then goes over
into an ordinary minimum problem. If the minimum condi-
tions for the guadratic terms in the change of potential
energy are set up before the integration (method of
Galerkin, reference 7) there is obtained again the system
of equations (15) where, for example, there is to be sub-

stituted Su= 5 -S%_ § A, where A, are the undeter=-
m 3 Ay -1

mined values entering in the expression for wu., Since

only known functions now stand in the integrands, the in-

tegration can be performed and on the left-hand sides

of the equations, there are then obtained polynomials in

the variations & A, etc., the undetermined values them-

selves occurring in the coefficients., Since the equations

must be satisfied for each system of values § A,, the

coefficients must vanish separately and this leads to a
systen of equations for computing the undetermined values,
This system of equations will have a solution for the
displacements other than zero only if the determinant of
its coefficients vanishes. There 1is thus obtained the re-
quired condition for the reaching of the stability limit.

The obligue buckling waves that are obtained in the
presence of shear are represented in the expressions for
the displacements by two partial waves for each displace-
ment shifted in phase by a half-wave length in the longi-
tudinal direction:
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m X . mmTy
W = COS wmemim 4 A Sin ——————
1 m b
x
- sin T== T A gin 0 Y
1l m Tem b
v = sin Ezﬁ % Bim cos 2 g
=----(17. )
T_X 7 T_Y
08 —— B COB —mmmmie
4+ C 1 - am B
. . m
W:SIHE:L-E% Cim sin =¥
+ cos I-2 5 ¢,y sin S.0L
i m b
A

with m =1, 2, 3... . The boundary conditions (16.,_,)
are exactly satisfied by the chosen expressions, while-
boundary condition (16.4) is satisfied except for the term
q,vy. As may be seen from equation (17.,) the derivatives
ot “v witn respect to x and y for the range (0 <« ¥y <
b) are of the same order of magnitude. Since gq, =

% (L - v¥®) 4 1, it follows that an exact satisfying of

the boundary condition (16.,) would require in the expres-
sion chosen for v only a slight correction which is dis-
pensed . with here,

As will be shown below, in the first partial waves we
require only the even terms in m and in the second only
the odd terms (or conversely). The number of terms taken
gives the degree of the approximation for the buckling
functions and for the critical stresses., As the computa-
tion for the case of pure shear shows, the series of ap-~
proximations for the critical gtresses converges very rap-
idly. The summation for the partial waves in the trans-
verse direction of the plate strip needs to be extended
only to m = 4,

The functions thus chosen for the displacements u,
v, w are now substituted in eguations (15.,.,). Since
the boundary condition (equation 16.4) is not exactly sat-
isfied, the boundary integral in equation (15.,) will
yield a small contribution. Making use of
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there is obtained the following

system of eguations:
nm

Alnan+91ﬁ ZAam _mg__
+B1nfn""01n"_gn"0

nm
Aznan““hﬁ ZAxm 1

—m? .
. b
.+ Benfn— Can—"gn=0

1 n2-}m?
Amfn+ men+41ls 2 2m g n“im”

. :
'—Cwn 915__2021:; =0}

T r

) ) 1 n2d-m?
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(19.,0)

(20:1-5)

where, for briefness, there has

been set
'Qﬁz%ﬁﬁ'*‘
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In the summation terms m is to be taken so that
n* m is an odd number (see equation (18)); i.e., for =n
even, m must be odd and conversely. The structure of
the system of equations is shown by the scheme of figure
5 which represents the part of eguations (21, :)with the
unknowns GCyyn, Cape. - It may be seen that the tntire sys-
tem breaks up into two independent partial systems whose
coefficients are distinguished by the heavy and light
dashes, From equations (21) it is further evident that
the coefficients of C,, in équation (21.,) are equal to
those of GO,y in equation (2l.,) whereas the right upper
region in figure 5 and the lower left region contain egual
and opposite coefficients., If therefore the unknowns
Ciyr Cygeves Cypy Cpye.. are computed from one partial
system (light dashes) the solution of the other partial
system can be found from the relations

N

Cia = Cpp Cay = -Cy,
C,e = Cau Coy = ~Cya .

The same holds true for the A's and B's since the en-
tire system (19-21) is constructed in exactly the same
manner as the portion shown in figure 5.

Substituting the equations (23) and the correspond-
ing expressions for A and B in (17), it is seen that
the two partial systems of figure 5 represent the same
buckling form except for a phase displacement of (/2 so
that it is sufficient to investigate one of them in which
the sum of the two subscripts of the unknown is odd. The
pairs of equations (19) (20) and (21) can then each be
combined into one as follows:
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joo
=Ina i

Apap - g, f =2 Ay 20 (-1
‘ - m n? - m®

B ,
+ Byfp - Op = gp = O
R €n

2’ 2 .
e O Dl

n2 ~ m?
8 b m ' »
R . - o i S - m_ ) :
= On AN m % Cry ng - m2 (-1)% =0 » (24.,_3)

T
8 b n m
S 2. T B, me— (.1
* qls mTmr m ° on2 . m2 (-1)
+ C N o 8 8 = c nm ( D = 0
R N T B -

«

- where n' and m now run through both even.and odd values.

For n =1, 2 ... 1 and m =1, 2 ,.. i1 (in each
term n = m is odd), there is obtained from the coeffi-
cients of the system of equations (24.,_ ,) a determinant
symmetric with respect ot its main diagonal, of the.

134 order. The reguired buckling condition is found in
the following manner, Let us consider the first two sys-
tems of equations of (24). For a finite number of terms
n=1, 2 ,.. 1 the undetermined values A and B can
be expressed in terms of the C's by Cramer's rule. From
the consideration of the values a&a,, b, f,, g,, h,, and

the summation terms, it may be seen that the determinant
of the denominator is of the order of magnitude i!*, and
similarly the determinant of the numerator of A,. The

numerator determinant of Bp, however, is of the order

of magnitude % i!4. By substituting the obtained expres-~

sions in the system of equation (24.3) there is obtained
a determinant of the coefficients of the ith order, By
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dividing through by the term k Z-X_ (n? 4+ p2)2 - this de-

terminant may be brought into a normal form:

1 +ec,, 12 o Cas C e e
(25)
031 C32 1 4’ 033 * . . L ]
. [ L] . L L[] [ ] L] L[] - » E ) 2] . . .
where the infinite gseries
Cyp ¥ Cyp + Cpy + Cyy+ Cpp +Cqy + (26)

converges absolutely, since n~2 is the highest power of
n occurring in CoB* This, however, is a suffi-

clent condition for the convergence of the determlnant
(25). The latter set egual to zero gives the buckling
condition for the curved plate strip under combined shear
and axial siresses,

In the elimination of A and B it is necessary to
solve determinants of the 12 order. With certain re-
strictions for the plate dimensions, which, however are
within the requirements of airplane construction, the com-
putations may be consideradbly simplified. Eguations
(24.,~3) are first transformed as follows:

- n.m ~1)m . b s =
A.n [an A 2 An ——ﬂ-—-—-—-'na,- -+ (1) J+ann Cn s gn 0
Apfy +Bn!_bn ~AZ Bmln? +m? (ﬁl)m}
' R By 2 p2 . pma
-cn.‘?_[hn-x_z.?. (1)mJ=o>(27
e ) ) Cnn - o
- b . b % 2 EE m
An == &n Bn.r-ﬁ.-[hn A CI wra— (1)’
+ L} op -A 2 lm_ BB _ (1)]=0
nﬂara mcn n® - m J

“1-3)
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where, for briefness, ‘there has been set A = q,f 8 In-

troducing the values ,
4 2 K e T s2

s . 3 1 - v2 pt

p* =

as‘reference values for the critical stfesses and remem-
bering that = q, ='% (1 -'Da), there is obtained for A
the expression .

T TT

B —
p* 3

\ = (28)

o ja
0N 0

The reference value p* thus introduced is the critical
compressive stress of a flat plate of width b for sim-
ply supported longitudinal edges. For the flat plate
v/p* = 1.334 and B = 0.793; for a curved plate T /p*

increases with the curvature but the product 1% B re-
1Y

mains, as further computation will show, approximately
constant, Thus A on account of s/b<« 1 1is also a
very small magnitude. '

For the flat plate (r =«) equations (27.,_,) sepa-
rate from equation (27.3). It is known that the vanishing
of the brackets after On in equation (27.,) gives the
smallest value for A and that An = Bp = 0. Also in the
case of plates with small curvature it is assumed in a
first approximation that the A term in the bracket after
Cn equation (27.5) remains the egsential buckling term of
the system of equations. If the A terms in eguations
(27.1_2) and the small magnitudes k and gq, are dropped
then Ap and B, may be expressed in terms of Cp from
these two eguations, as follows:

N

‘b - n® - v B2
. r (n2 + p2)2
B (29)
b n2 2 + v) p2
B, = 2y 2 +_( )Bcn
T (n® 4+ p2)2

from which is obtained:
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By, mmn? + (2 +v) B2 (n2 +‘BB)3 Cm
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o

With the aid of these first approximations the ratios be-
tween the AN terms and the parts ap, bp, etec., in the
coefficients will be set up as a check on the approxima-
tions made, If g2 1is neglected compared with =n? or
mz and in addition there are neglected (for =r % ) the
small magnitudes k and gq,, the required ratios are
found to be the following:

For Ap in (27.,)

Cc
ARSI . SN S - 00 DL
l] -V m Cn ng - ma ‘

E .

For 3B, in (27.p)

c ;
N oB 1 l<3+9)unm=
m n

For Cp in (27.,)

‘ T (Bl.yg)
7\29..“.‘. 1 E(—l)mzl 0 .15
m Cn na - me n ’
For B, in (27.;)
¢ 1
Cp n® -<'.m : »
For Oy in (27.,) : AN
o} 2p2 . .-
Y ! nom 20 ()R o1
m Gy p2 _ po b2 J

For r-—>o ratio (31.,) will become infinite, As shown

by equations (22), however, the k and g, term in ¢y
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is not to be neglected compared to 1, but conversely, and
there is obtained in place of (31.5) C ‘

5 C nm .
A & _m 1 - (-1)%: 1 (32)
n SRR o R
12 ¥ '3 bpE p*

where the reference value p* has also been introduced
in the term with g .: The ratios (31.,_,) are independent

of the width of the plate. For'aufficiently small curva-

292
ture /ﬂ >
\ p2

2’1\ these ratios are smaller than {31..) by

the factor nara/bg and in addition smaller than (32) by
n2 or m? in passing to the flat plate on account of

- <& 1, There has thus been confirmed thse aséumption

made above that the A term after C_ in equation (27.,)

remains the essential buckling term also for the case of-
plate strips of small curvature. The magnitudes of the
ratios thus set up are dependent of €,/C,. For values

of n to which correspond large values of C, (in the
present case for n = 1 to 3, a$ will be shown with the
aid of examples); i.e., for considerable portions of the
system of equations the ratios'(&l.l 4) are snall and the
first approxinations for A and Bj,, according to egua~
tions (29) are sufficiently accurate. For larger values
of n, that is, smaller values of C,, the accuracy
will decrease but the corresponding buckling terms,.a

will be shown on evaluating the buckling determinant, are
of small significance.

The determinant of the coefficients of (27) must be
equal to zero for nonvanishing values of A,, B,, and Cp,
If, in the course of the computation, the powers and products
of k, g, and of terms with A are neglected and for
An/A, and By/B, their first approximations from (30)

are substituted, we arrive at the following system of
equations:



N.A.C.A. Technical Memorandum No. 898 21

Cn {(1 -‘ua) 34-+ k n%%i [(na + B2

6+(4‘u)n4

B2 + 3 n® gt+ v B°)

+ =2 (n* 4+ 2(2 - ) n3p2 4+ (2 - 3 v?) 54)J

- ) 2 T .
o T [0 60 v o et v ae o) 60 )
-4 &l ——— (-1)"
= qlﬁ m oo (n»ai"l‘ Ba)a % Cm n2 - me (-1) {1
N -ba 1 .r—mg - v‘B‘3 58

m2re2 (m2® + $2)2 Ln2 - v B2

~ 2 2

L2 (23 B2 e, s ¥ v) pR) m—ttn

n2 + (2 + v) p2 - 2 n®
S {22 2 BRIR ha gy (2 4 v) 8D

(n2 4+ p2)°

m? ¢+ (2 +v) B2

n? + (2 + v) BB

(n2 + "(33)

2+ ) §2>J} E

The con#efgence of the determinant of the coefficients in
equations (33) may be easily proved if the squations are
divided through by k I

(n® + p2)¥4

" There is then ob-

tained the normal form (25) with the converging series
(26)., The left side of equation (33) is exact except for
the neglected products and powers of k and g, and has
the same form as for a circular, cylindrical shell under
compression and without stiffeners.*

* (See reference 5, p. 196.) The circular, cylindrical
shell under compression during bdbuckling is divided up by
the nodal lines of the buckled form in the’x direction into
curved plate strips with w = Wyy = U = Vg = 0O at the
nodal lines; i.e., the sane “boundary confitions® which are
considered'here. The exact computations of W. Fligge can
therefore be used for the curved plate strip,
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If we neglected the shear load terms in equations (27)
with the exception of the important buckling term for small
curvature strips at C, in the third equation, there would
remain on the right side of equations (33) only the 1 in
the braces. Let us denote the other terms as correction
terms and expand them, since B2 is a small magnitude, in
powers of B. We break off at the quadratic terms in 8
and obtain for the braces the following expression

b G 2) G- - e o

The above elimination process is gufficiently-accurate
if the correction terms (34) are small as compared with 1.
For a plate strip with a central angle of 459, i.e., with
ﬁ% = %, corresponding to a dircular, cylindrical shell
with 8 longitudinal stiffeners, the correction terms for
n=1 and m=2 (n +m odd) on neglecting the small
terms with B2 amount to about -4 percent. On the left
side of equation (33) the coefficients of k and q
(square brackets) are arranged in powers of b/ur. For

b .
== % the portions with b*/n%r%? at Xk are negligidbly

small and the sguared portions in b/nr amount to about
12 percent of (n2 + P2)2 for n = 1, For larger values
of n these terms on both sides of equation (33) become
relatively still smaller, Considering that the extension-
al part of the deformation (1 + V2)B%4 on the left side
of equation (33) and the bending portion with

k Eiii for n =1 are approximately equal as will be
b

confirmed in the evaluation for the case of pure shear,

there is found for the term with b2/n2r2 in the coeffi-

cient of k only about -6 percent of the no-load terms,

Hence, for pure shear load (gp = O) the terms with
v® /m®r®, since they are subtracted on both sides of egua-
tion (33), may be neglected sven for LI %,

T

In the coefficients of the longitudinhal stress g,
on the left side of equation (33) the squared terms in

b/mr for b/mr = % amount to about +6 percent of (n2 '+ B2)2
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for n = 1, 7For pure coumpression the dropping of the
terms with b2 /n2r2 and b4 /n%r? in the coefficients

of k and g,, slnce they occur with different signs,
would lead to an error for the buckling stress of about
+13 percent, 'In the table given below the .error which
would arise from neglecting the above-mentioned terms, are
given as a function of Db/mr for X% = 1/12 s2/r2 = 10-5
and v = 1/6! (the exact values are taken from W. Fliggs):

L AL i i i i i
nr 1 8 6 5 4 3 2
Error in '
percent 1.4 3.2 6 8 13 25 64

Allowing an error of 6 percent, the simplified computation
may be employed up to central angles of 30° (b/nr = 1/6)
for the case of pure compression,

Under the restrictions of 452 for the csntral angle
for pure shear and 30° for pure compression, there is ob-
tained from eguation (33) after division by -

4,4
k ﬂbi (n®+ ﬁa)2%§ n B the following system of eguations:

, . L
PR I S K
n 32 B L "~ (n® 4 pB)° p* n?
T m ,
- =% - -1)® =0 35
p* mA(Cm @) 2 - m? (-1) (85)
where
| »? B
mirt g2

1The buckling formulas with the above neglected terms for
the case of pure compression become the following. (See
reference 1,) '

p* 316 *
1
-l =2 o for Z 16
p* 2 V¥ ®
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The two parameters of a curved plate strip “b/ﬂr and b/s
still remain only in  yw:  and in the reference magnitude p*.
Prom this it may be seen that the critical stress in the
case of pure shear or pure compression may each be repre-
sented by a curve for a plate strip with small curvature.
and in the case of combined stress by a single parameter
family of curves,

If,for briefness, we setﬂ

In = _l_[ (n?‘% + ﬁe;)g +w | B4 | + Sy Bg:! '}_ (37)
32 B ) (@ + p2)2  p* | 2

then for a given G/P* the critical shearing stress is
given by setting equal to zero the following determinant:

1 .7 1T
T 1T 0 S
1 Sp* ) N 15 p* o LN B
1: T 1T 1T
= — - e ——— O - e — . * 9
3 p* Ta 5 p* 21 p*
1T 1T
A O —gp* Ts T?'E; O LI I ) o
1T 1T . .l (88)
15 p* 7P* 4 9 p* s
L -1 T
Q _Hg;- 0] 9p* T5 LN

The dropping of the terms with b2/n2r2® and b?/nert
apa

4

in the brackets after k I in equation (33) amounts

to neglecting the trapezoidal shape of the plate element
in cross section., Prom equations (5.,.,) and (7.,_g)
there are then obtained the following simplified egquations
for the plate strains and for the section forces:
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.A\

m
i

e =g E gy
ey = v + E - Z W b—“'**~;"';'°'" (2;‘9~ )
N r Jy “1-3

vxy = uy + Vx - 2'2 ny ;

\
W
Ny: = D (v Uy + Vy +.;)
o = -~ p iz .
Ney = Vyx = D 55— (uy +vx) | ° . (40. 1s)
My = K(wgy + ¥ wyy)
My = KV wey + Wyy)

/

The curvature of the plate element in these magnitudes is
expressed only through the term w/r. Of.the load terms

there remain after striking out the portions with
2

" the buckling term -2 g, Wxy and -gpr wWxx in

rﬁﬂl
nm
equation (lb.a) and. —qlﬁig g (~1)m and
: - ; R T m ng - mz
O T Ce : - . . AU :
q, E—gﬂ B2  in eguation (24.3), i.e., only the buckling
S .

terms which would remain in passing to the flat.platea‘
In the equilibrium condition there is added to the por-
tions for the flat plate the radial components of the
ring stresses. The system of differential equatlons

(15. ) now assumes the following form:
] Lo N
Uyq + 5 uyy + S vxy 4+ P - = 0
. 3 .. - - ! N Lz . w - : - s ‘
1 - VU P N , Y 0 o ) Ll
vyy +;_”2-"F_ Vex + ) ‘._ux;f.'?‘ 'I',Z =0 ' ' ) 7“.(417,1—3)

% (U Uy + vy + %) +kr® Ahw - 2 Q,Vxy ~ 9Wxx = 0

b4
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By introducing a stress function, equations (40.1_2) can
be further combined into one, The equilidbrium condition
of the forces in the tangent plane to the plate slement
are now simply . oo

3 N 3 ¥
x4
ax‘ 0

EL = 0
m .

3 Ny .\ d Nxy
3y 3 x

These equations are exactly satisfied by the expression
for the stress function

v = ®xx: Nxy = = Oxy

i - 1
s Wy = ny' s "

o ji=

From equations (40) there is obtained by elimination of
the displacements u and v the relation between the
stress function ¢ and the radial displacement w

AN D = WXX (4201)

|+

The differential equation of (41l.,) assumes the form

] 7 A
5 Px + k2 A 4 w - 2 9, Wxy - Q, Wxx = 0 (42.2)

The system of differential eguations (41.,_,) or (42.,_,),
the validity of which was proved here for a central angle
of 45° for the case of pure shear and about 30° for the
case of pure compression, is the starting point in the in-
vestigation of Leggett. ,

IV, BVALUATION OF THE BUCKLING CONDITION AND SETTING-UP
OF AN AFPROXIMATION FORMULA FOR THE CASE OF PURE SHEAR
In the diagonal terms of the buckling determinant

(38), the longitudinal stress gy is to be set equal to
to zero, Using in the expression values for =n up to
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n=2,3 ,.., 8tc., there are obtained from equations (38)
for the determination of the critical shear stress the
following approximation formulas:

First approximation;
T 2 .
(5: =9 T T, RS (43)

Sécohd_approximation:_

T ‘\2 3 T, _ I, T, .
57 1 T s

Third approximation:
< ) ( L1 > < ) [T 3%, Tl Ti-g@__+ Ty Ty
3Xx7  BX15 p* 52 72 18

+ Ty Ty Ty Ty = 0. (45)

The further approximations need not be written out since
the critical shear stresses hardly differ in the

second and third approximation., In the diagonal terms T,
there enters the ratio of the plate width to the plate
wave length p = b/l as an unkoown, The latter must be
so chosen as to give the least critical stresses.

In figures 6 and 7 the results of the computations

are plotted against Jlg(l - va)'—— _/——. Keeping
s

" the ratio b/s fixed, the curves show the dependence of
the critical shear stress and the reciprocal wave length
~.0on the plate curvature. The first approximation for the
~critical shear stresses gives in the entire range values
about 5 percent too high while the second and third prac-
tically coincide. For @ = O{(r = »), there is already
obtained from the third approximation the exactly computed
value T/p* = 1.3%34  of Southwell and Skan (reference 8).
Figures 6 and 7 also contain the curves computed by Leggett
for the other limiting cass of a plate strip with flexur-
ally rigid edge stiffeners (v = 0). The critical shear
stresses lie considerably higher than in our case of .a
plate strip with longitudinal stiffeners flexurally yield-
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ing in the circumferential direction (N, = 0). 1In prac-
tical applications the edge condition wi%l lie between
these two limiting conditions and the assumption heré made
is on the safe side.

From the consideration of equations (44) and (45) it
may be seen that on dropping all terms except those with
32 in the denominator there is again obtained the first
approximation (43), Since the latter differs from the
further ones by only 5 percent the other terms in the sec-
ond, third, etc., approximations which are obtained using
greater values of n in the assumed expressions should be
very small, There is thus proved the statement made in
section III that the errors made with increasing n in
the elimination process are insignificant in the final
result.

As may be seen from figure 6, the critical-stress
curve with increasing w approaches a straight line asymp-
totically. The eguation of this asymptote may be easily
derived from the second approximation by introducing a
new unknown and striking out small terms. The individual
terms in equation (44) are the following:

Tl ::--lT--- P(l +52)2+ w—;n—é:——-——_
32 B L | | (1 + %) 2
- . . 54 : r-l
Tp = —— | (4 + B%)% + w — -] =
32 p b (4 + p2)2d 4
i i 2\ 2 . * 11
¥ sz L v F T (9 + p2)2y?

As a new variable there is taken the ratio of the bending

, 4
portion (1 + ﬁa)a and the extensional portion u;————E—w——
' (l + 62)2

in T1 and set equal to z%,

4

(1 + B%)% = 2% @ ——P
. (1+62)2

After some computation, thefe is obtained



N.A.C.A, Technical Memorandum No, 898 29

As is easily shown by the numerical computation, for a
large value of (¢ the small root must be taken for 8.
Neglecting small terms, there is obtained

1 | )
p =T '
2 w - )
n, =L Yoz (2 +f:;> ol (4a8)
’ _ T a _ T 4

/

and substituting in equation (44)

2 1
2 z 1+ fr)
T 30 2 ( z
&) -G )
p* 32 26 + -
' z

d (1 [p*)?

a(z®)

From the minimum condition = Q, ..there follows

z = 0,956

1.04
g = 2228 . (47)

o=

L =0.80 Vo (48)
p* '

il

The product :;L g remains for large value of w constant
p* '

and the extensional and-bending portions in T, on ac-

count of 2z = 0.956 are almost equal,

From figure 6 it may be seen that the curve of crit-
ical stress may be replaced by its asymptote for
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%ﬂu = 2,5, 1i.e., for w % 40 - with sufficient accuracy.
The equation of the asymptote (48) for w>40 may be
assumed as the approximation formula for the computation
of the critical shear stress. After some computation
there is obtained the following buckling formula

T=1.56 E g Jé;
3/4 b r

(1 - v2)

v /s |
hence with VU = 0,3: . for = f2>4.5 (49)
. ) S . r

N

i
J

4 e
b s b r-
For = [/ =< 4.3 or w= 12(1 - V®) e =u < 40, the
8 r TT41.4 a2 )

critical shear stresses must be taken from the curve in
figure 6.

V. EXAMPLES

The accuracy of the elimination process described in

section III for a central angle of 459°

b

mr
tation carried out here, will be tested on some examples,
There will first be considered a plate strip with b/s =
50. For v = 0.3 there is obtained from equation (38)
w = 172,5 and further for % = 0.1, p* = 2,95, (See
fig. 6.) TFrom the buckling determinant (38) the coeffi-
cients in the expression are computed to be

1 S
= Zu>' which was assumed as the limit for the compu-~

C, = -0.413 C, C, = -0.0588 C, ¢, = -0.0065 C,

3 4

The buckling function then assumes the following form:

1 Jo 1 - 21 3
= w o= sin Yom T E) 0,413 sin 20F _ 0,0085 sin —0 y}
c, b L b b
V0.1 " 7
+ cog ——— U x]sin 7L 0.0556 sin 5my
b L b ' b
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In figure 8 the corresponding buckling surface is repre-
gsented Dy means of contour lines, In figure 9 thisg is

compared with the buckling surface of a flat plate. taken
from the paper by Southwell and Skan (reference 8). From
a comparison of the two figures it may be seen that the
wave length of the curved plate strip is larger and the
folding angle made with the longltudinal axis smaller than
for-the flat plate.

The accuracy of the first approximations for A, and
B, (equation (29)) depends on the ratios of the neglected
portions in the coefficients of A,, By, and Cn, to the
remaining portions an, by, etc., in equations (31,1,3).
For the absolute values of the ratios in equation (81l.;)
there is obtained

for n = 1: 0.000615
n = 2: 0.0145
n = 33 0.0198

n o= 4: 0,347

The ratios in equations (31.,) and (31.3) are, as may also
be seen from the form of the equations, somewhat greater
for n =1 than for the equation (31;) dbut for n = 2 to
4, smaller, Prom the computed values it may be seen that
the first approximations for A, and By for n =1 to

3 are sufficiently accurate, The larger error for n = 4
is unimportant for the computation of the critical stresses
on account of the small magnitude of the corresponding

load terms,

For larger values of w (i.e., for larger b/s at
the same central angle of 45°) the equations (46), (47),
and (48) may be substituted for the values Tn, £, and
T/p*, corresponding to the good agreement of the asymp-
tote to the second approximation with the exact T/p*

curve, Since ?ZT enters as a factor in all these equa-
tions, there is obtained from the buckling determinant (38)
independently of the value of w, the following values

for the coefficients in the expression for w:

C, = -0.380 6, €, = -0,0470 G,  C, = -0,00565 C,
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Prom the comparison with the accurately computed coeffi-
cients for w = 172,5, it is seen that the buckling
shape changes only slightly in the y direction for larger
values of @ and is essentially distorted only in the

x direction, correspondlng to equation (47) for the re-
01procal wave - -length, : : : .

The ratios in eguation (31. ) for w = 172.5 Dbecome
at larger values of w and same central angles still
smaller on account of the small change in the coefficients
for the w expression with decreasing s2/b2,

VI. SUMMARY

In the present paper the buckling condition for an
infinitely long plate strip with constant curvature and
simply supported longitudinal edges is set up for com-
bined shear and longitudinal stress. Starting from the
complete fundamental eguations for the displacements a
simple computation process is developed for plate strips
of small curvature (central angle £459) with the aid of
a Ritz expression. For the case of pure shear stress the
buckling condition is evaluated and for 2 /8 >4.3 (w>

‘ 8 r
40) a simple approximation formula derived. (See fig. 6
and egquation (49).,) The computation results for the gen-
eral case of combined shear and axial stresses will be
reported on later, -
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Figs, 1,3,3,4,5,6,7
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